Distributed Learning in Secondary Spectrum Sharing Graphical Game

M. Azarafrooz, R. Chandramouli

A presentation by

M. Azarafrooz

School of Electrical and Computer Engineering
Stevens Institute of Technology

December 1, 2011
Outline

1. Introduction
2. Game Theoretic Model Formulation
3. Learning and Punishment
4. Simulation Results
5. Conclusion and Future Works
Outline

1. Introduction
2. Game Theoretic Model Formulation
3. Learning and Deviation Punishment
4. Simulation Results
5. Conclusion
Introduction

Spectrum Sharing Literature
- El-Farol Game Family
 - Minority Game/Simplex Game
 - Local Minority Game
- Learning Concern: Can local inductive approaches solve the spectrum sharing game (global) optimally?
 - Deviation Punishment
Introduction

- Spectrum Sharing Literature
- El-Farol Game Family
 - Minority Game/Simplex Game
 - Local Minority Game
- Learning Concern: Can local inductive approaches solve the spectrum sharing game (global) optimally?
 - Deviation Punishment
Introduction

- Spectrum Sharing Literature
- El-Farol Game Family
 - Minority Game/Simplex Game
 - Local Minority Game
- Learning Concern: Can local inductive approaches solve the spectrum sharing game (global) optimally?
 - Deviation Punishment
1. Introduction
2. Game Theoretic Model Formulation
3. Learning and Deviation Punishment
4. Simulation Results
5. Conclusion
Introduction
Game Theoretic Model Formulation
Learning and Deviation Punishment
Simulation Results
Conclusion

Spectrum Sharing Model

\[\{ K = \arg\max_{k_i} \sum_{i} U_i(x_{ki}, I_{ki}, y_{ki}) \}, \]
\[\forall i \in \{1, ..., n\}, \forall k_i \in \{1, ..., B\} \] (1)

- Secondary Users Connected to Primary Band 1
- Secondary Users Connected to Primary Band 2
- Secondary Users Connected to Primary Band 3

Primary Band 1, \(y_1 \)
Primary Band 2, \(y_2 \)
Primary Band 3, \(y_3 \)
The graphical spectrum selection game (GSSG) Elements

- Secondary users as the players, set of pure strategies for user (vertex) i is the set of $S_i = \{1, ..., B\}$.

- Then the utility user i receives, v_i, is given by:

$$v_i(k_i) = \sum_{j \in N(i)} w_{ij} M_i(k_i, k_j)$$

(2)

where w_{ij} is the weight of interaction between player i and j

- M_i is realized by the following ant-coordination payoff matrix

$$
\begin{pmatrix}
0, 0 & y_1, y_2 & \cdots & y_1, y_B \\
y_2, y_1 & 0, 0 & \cdots & y_2, y_B \\
\vdots & \vdots & \ddots & \vdots \\
y_B, y_1 & y_B, y_2 & \cdots & 0, 0
\end{pmatrix}
$$
The graphical spectrum selection game (GSSG) Elements

- Secondary users as the players, set of pure strategies for user (vertex) \(i \) is the set of \(S_i = \{1, ..., B\} \).
- Then the utility user \(i \) receives, \(v_i \), is given by:

\[
v_i(k_i) = \sum_{j \in \mathcal{N}(i)} w_{ij} M_i(k_i, k_j)
\]

(2)

where \(w_{ij} \) is the weight of interaction between player \(i \) and \(j \)

- \(M_i \) is realized by the following ant-coordination payoff matrix

\[
\begin{pmatrix}
0, 0 & y_1, y_2 & \ldots & y_1, y_B \\
y_2, y_1 & 0, 0 & \ldots & y_2, y_B \\
\vdots & \vdots & \ddots & \vdots \\
y_B, y_1 & y_B, y_2 & \ldots & 0, 0
\end{pmatrix}
\]
The graphical spectrum selection game (GSSG) Elements

- Secondary users as the players, set of pure strategies for user (vertex) \(i \) is the set of \(S_i = \{1, ..., B\} \).
- Then the utility user \(i \) receives, \(v_i \), is given by:

\[
v_i(k_i) = \sum_{j \in \mathcal{N}(i)} w_{ij} M_i(k_i, k_j)
\]

(2)

where \(w_{ij} \) is the weight of interaction between player \(i \) and \(j \).
- \(M_i \) is realized by the following ant-coordination payoff matrix

\[
\begin{pmatrix}
0, 0 & y_1, y_2 & \cdots & y_1, y_B \\
y_2, y_1 & 0, 0 & \cdots & y_2, y_B \\
\vdots & \vdots & \ddots & \vdots \\
y_B, y_1 & y_B, y_2 & \cdots & 0, 0
\end{pmatrix}
\]
Nash - Evolutionary Stable Strategy (ESS)

- Potential Function Exists for the proposed spectrum sharing played on the **Weighted** graph G

Figure: Spectrum selection for $B = 3$ denoted by three different colors.

- Nash Equilibrium of the Anti-coordination Game $\mathcal{E} = [y_1, y_2, \ldots, y_B]$
Nash - Evolutionary Stable Strategy (ESS)

- Potential Function Exists for the proposed spectrum sharing played on the **Weighted** graph G

![Figure](image)

Figure: Spectrum selection for $B = 3$ denoted by three different colors.

- Nash Equilibrium of the Anti-coordination Game

 $\mathcal{E} = [y_1, y_2, \ldots, y_B]$
Evolutionary Stable Strategy played on an appropriate graph under appropriate learning results in $X = \left[\frac{1}{y_1}, \frac{1}{y_1}, \ldots, \frac{1}{y_B} \right]$

Utility function definition

$$U_i(x_{k_i}, I_i, y_{k_i}) = x_{k_i}y_{k_i}/(1 + I_i)$$ \hspace{1cm} (3)$$

Price of Anarchy Improvement

$$PoA(G) := \frac{\max_{s \in S} U(s)}{\min_{s \in E} U(s)}$$
Game Theoretic Model

- Evolutionary Stable Strategy played on an appropriate graph under appropriate learning results in $\mathcal{X} = [\frac{1}{y_1}, \frac{1}{y_1}, \ldots, \frac{1}{y_B}]$

- Utility function definition

$$U_i(\mathcal{X}_k, I_i^k, y_k) = \mathcal{X}_k y_k / (1 + I_i^k)$$ \hspace{1cm} (3)

- Price of Anarchy Improvement

$$PoA(G) := \frac{\max_{s \in S} U(s)}{\min_{s \in \mathcal{E}} U(s)}$$
Local Exponential Learning Algorithm

- Every node i broadcast the chosen spectral band to its neighbors.
- Evaluate utility $v_i(s, t)$ using (2) $\forall s \in \{1, ..., B\}$.
- Update mixed strategy profile according to (4) & (5).
- Select spectral band using mixed strategy profile.
- Stop if: $\max_s |v_i(s, t) - v_i(s, t-1)| \leq \beta, \beta \geq 0$ $\forall i \in \{1, ..., n\}$. Otherwise go back to step 1.

$$p_{is}(t) = \frac{e^{\Gamma U_{is}(t)}}{\sum_{s' = 1}^{B} e^{\Gamma U_{is'}(t)}}$$, $\forall s \in \{1, ..., B\}$ \hspace{1cm} (4)

$$U_{is}(t + 1) = U_{is}(t) + v_i(s, t)$$ \hspace{1cm} (5)
The idea of punishing nodes can be by setting the weights $w_{ij}, j \in \mathcal{N}_i$ in the graphical game.

- $w_{ij} = 0$, it means that the secondary node i ignores the outcome of interaction with user j.
- If $w_{ij} = -\infty, \forall j \in \mathcal{N}_i$ then all the neighbors punish node i by jamming it, i.e; they transmit in the same band as i w.p. 1.

This mimics the ‘Homo Reciprocans’ behavior.
Deviation Punishment

- The idea of punishing nodes can be by setting the weights $w_{ij}, j \in \mathcal{N}_i$ in the graphical game.
 - $w_{ij} = 0$, it means that the secondary node i ignores the outcome of interaction with user j.
 - If $w_{ij} = -\infty$, $\forall j \in \mathcal{N}_i$ then all the neighbors punish node i by jamming it, i.e; they transmit in the same band as i w.p. 1.
- This mimics the ‘Homo Reciprocans’ behavior.
Congestion As ESS
Price of Anarchy

Simulation Results

- $B=4$, $Y=[1/4, 1/4, 1/4, 1/4]$
- $B=3$, $Y=[1/3, 1/3, 1/3]$
- $B=3$, $Y=[1/6, 1/3, 1/2]$
Dynamic Price of Anarchy

- B=5 with Dynamic Y value
- B=5 with Homogeneous Constant Y value
Network Volatility

Switching over Primary Bands

- B=5 with R=1
- B=5 with R=1.5
- B=5 with R=2
- B=4 with R=1
- B=4 with R=1.5
- B=4 with R=2
Deviation Punishment

![Graph showing Cheating User Payoff over Iteration](image)

- Cheating phase
- Punishment Phase

- Iteration
- Cheating User Payoff

- Payoff values: 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
- Iteration range: 0 to 30
Conclusion & Future Works

- Ising model Improvement
- So many Unanswered Questions.
- Learning Improvement/Convergence Rate
- Punishment Ideas using Graphical Game Theory
Conclusion & Future Works

- Ising model Improvement
- So many Unanswered Questions.
- Learning Improvement/Convergence Rate
- Punishment Ideas using Graphical Game Theory
Conclusion & Future Works

- Ising model Improvement
- So many Unanswered Questions.
- Learning Improvement/Convergence Rate
- Punishment Ideas using Graphical Game Theory
Conclusion & Future Works

- Ising model Improvement
- So many Unanswered Questions.
- Learning Improvement/Convergence Rate
- Punishment Ideas using Graphical Game Theory
Thanks For your attention! Questions?